IBKRWEBINARS.COM

May 24, 2023

0CC

Skew and the Implied Volatility of Options – Are They Connected?

Mathew Cashman

Principal, OCC Investor Education OCC

Exchange and Industry Sponsored Webinars are presented by unaffiliated third parties. Interactive Brokers LLC is not responsible for the content of these presentations. You should review the contents of each presentation and make your own judgment as to whether the content is appropriate for you. Interactive Brokers LLC does not provide recommendations or advice. This presentation is not an advertisement or solicitation for new customers. It is intended only as an educational presentation.

IBKRWEBINARS.COM

Disclosure:

Options involve risk and are not suitable for all investors. For information on the uses and risks of options, you can obtain a copy of the Options Clearing Corporation risk disclosure document titled <u>Characteristics and Risks of Standardized Options</u> by calling (312) 542-6901.

Multiple leg strategies, including spreads, will incur multiple transaction costs.

Futures are not suitable for all investors. The amount you may lose may be greater than your initial investment. Before trading futures, please read the <u>CFTC Risk Disclosure</u>. For a copy visit interactivebrokers.com.

There is a substantial risk of loss in foreign exchange trading. The settlement date of foreign exchange trades can vary due to time zone differences and bank holidays. When trading across foreign exchange markets, this may necessitate borrowing funds to settle foreign exchange trades. The interest rate on borrowed funds must be considered when computing the cost of trades across multiple markets.

The Order types available through Interactive Brokers LLC's Trader Workstation are designed to help you limit your loss and/or lock in a profit. Market conditions and other factors may affect execution. In general, orders guarantee a fill or guarantee a price, but not both. In extreme market conditions, an order may either be executed at a different price than anticipated or may not be filled in the marketplace.

There is a substantial risk of loss in trading futures and options. Past performance is not indicative of future results.

Any stock, options or futures symbols displayed are for illustrative purposes only and are not intended to portray recommendations.

•IRS Circular 230 Notice: These statements are provided for information purposes only, are not intended to constitute tax advice which may be relied upon to avoid penalties under any federal, state, local or other tax statutes or regulations, and do not resolve any tax issues in your favor.

Interactive Brokers LLC is a member of <u>NYSE FINRA SIPC</u>

Option Skew and Implied Volatility: Relationships and Risks

Mat Cashman

Principal / Investor Education / OCC Instructor / The Options Industry Council (OIC)

www.OptionsEducation.org

Disclaimer

Options involve risks and are not suitable for everyone. Individuals should not enter into options transactions until they have read and understood the options disclosure document, Characteristics and Risks of Standardized Options, also known as the ODD, available by visiting OptionsEducation.org or by contacting your broker, any exchange on which options are traded, or The Options Clearing Corporation at 125 S. Franklin St., #1200, Chicago, IL 60606.

In order to simplify the calculations used in the examples in these materials, commissions, fees, margin, interest and taxes have not been included. These costs will impact the outcome of any stock and options transactions and must be considered prior to entering into any transactions. Investors should consult their tax advisor about any potential tax consequences.

Any strategies discussed, including examples using actual securities and price data, are strictly for illustrative and educational purposes and should not be construed as an endorsement, recommendation, or solicitation to buy or sell securities. Past performance is not a guarantee of future results.

All content in this document is owned, or licensed, by The Options Clearing Corporation ('OCC'). Unauthorized use is prohibited without written permission of OCC. While reasonable efforts have been made to ensure that the contents of this document are accurate, the document is provided strictly "as is", and no warranties of accuracy are given concerning the contents of the information contained in this document, including any warranty that the document will be kept up to date. OCC reserves the right to change details in this document without notice. To the extent permitted by law no liability (including liability to any person by reason of negligence) will be accepted by OCC or its employees for any direct or indirect loss or damage caused by omissions from or inaccuracies in this document.

Trademarks

The following trademarks, logos, and service marks displayed are owned by The Options Clearing Corporation:

The Options Clearing Corporation[®]

OCC®

OCC THE FOUNDATION FOR SECURE MARKETS®

The Options Industry CouncilSM

OIC®

About OIC

- FREE unbiased and professional options education
- OptionsEducation.org
- Online courses, podcasts, videos, & webinars
- Contact Investor Education at options@theocc.com

Annual Options Volume 2000-2022

OCC Annual Contract Volume by Contract Type 12.0 10.0 Cleared Contracts (Billions) 8.0 6.0 4.0 2.0 0.0

■ Equity ■ Non-Equity

Presentation Outline

- Historical vs. Implied Volatilities
- What is Skew?
- How are Skew and Implied Volatility Related?
- How to Interpret the Metrics
- Q & A

Historical Volatility

Volatility Defined: What is It?

- Volatility reflects <u>fluctuations</u> in underlying stock price
 - Moves to the upside/moves to the downside
 - Over days, weeks, months, or longer
 - Does not imply a price trend

Historical Volatility

- A stock's previously delivered volatility
 - Can be observed and quantified (backward looking)
 - This is "<u>historical</u>" volatility
 - A statistic, or a fact, not a prediction or a forecast

Comparing Distributions

- Compare distributions of three stocks each with different delivered volatility profiles
 - Stock A = 15% historical vol
 - Stock B = 25% historical vol
 - Stock C = 35% historical vol

\$100 Mean

Implied Volatility

92

89

25.

OIC

41.00 3,88 31,23 <u>26,18</u> 22,77 11.05

02.75

5

05.0

Implied Volatility: Definition

- Only options have implied volatility
 - Main input for all option pricing models
 - Reflects current forecasted volatility assumptions with respect to current underlying price and movement
- Reflects the marketplace's current forecast for <u>underlying stock's</u> future volatility
 - Consensus of all market participants
 - Dynamic input into options prices constantly moving.

Implied Volatility Represents the Future

 <u>Option implied</u> volatility reflects current expectations of <u>future stock</u> volatility (forward looking)

Implied vs. Historical Volatility

- Implied volatility
 - Can be at great variance with a stock's historical vol
 - Prediction of future stock volatility is not necessarily right or wrong
- Expect implied volatility to change
 - May occur intra-day or over time
 - May occur abruptly and significantly
 - Does not require change in stock price
 - Generally a dynamic feature of any option's premium

Implied vs. Historical Volatility

- Will an option's implied volatility return to its underlying stock's historical / delivered volatility level?
 - Not necessarily
 - Not safe to assume it will
- Why be concerned about implied volatility?
 - Directly affects market value of your options (time/extrinsic value)
 - Not always predictable

Implied Volatility: Effect on Option Prices

- Other pricing factors remaining constant, a change in implied volatility will affect option prices:
- As <u>implied</u> volatility <u>increases</u>
 - both call and put prices <u>will increase</u>
- As <u>implied</u> volatility <u>decreases</u>
 - both call and put prices <u>will decrease</u>

Skew: A Definition

Skew: A Definition

- Option skew refers to the potentially asymmetrical implied volatility of options with different strike prices but the same expiration date. It is the difference in implied volatility between out-of-the-money (OTM), at-the-money (ATM), and in-the-money (ITM) options.
- Skew can be measured / quantified in many different ways:
 - Simple price terms:
 - the price differential of a 25 Delta put and a 25 Delta Call
 - As a ratio of the two Implied Vols:
 - 25 Delta put / 25 Delta Call
 - 25 Delta put / At-the-money Implied Vol
 - 25 Delta call / At-the-money Implied Vol

Skew: A Definition

- Skew is ultimately a function of Supply and Demand, meaning:
 - It can be quite dynamic
 - It can be unpredictable
- Some people view it as a sentiment indicator considering it an indication of which directional tail is more in-demand
- Skew can be POSITIVE or NEGATIVE!

The History of Skew

The History of Option Skew

- Option skew has existed for as long as modern options trading has been around
- Many people consider the financial crises of the late 1980s, 1990's and early 2000's to be the birth of modern skew
- Since then, option skew has become a standard feature of options markets, with traders and investors using it to price options and design trading strategies

Positive and Negative Skew

Is it Put Skew, Call Skew, or Smile Skew?

Positive Volatility Skew

Negative Volatility Skew

© 2023 The Options Clearing 23 Corporation. All Rights Reserved.

Smile Volatility Skew

Is it Put Skew or Call Skew?

 Equities and Indices tend to have a skew with higher OTM puts than OTM calls – generally dictated by long term price history – sometimes referred to as "Negative skew" or "Put skew"

 Some commodities tend to have a demand Skew – with higher volatility levels for OTM calls than OTM puts – and are generally dictated by long term price history – generally referred to as "Positive skew" or "Call skew"

Negative Volatility Skew

What about the Smile Skew?

 Smile Skew can be seen in markets where uncertainty or risk is perceived to exist in both directions. Thus, both OTM puts and OTM calls can have higher implied volatility levels than the ATM options

Smile Volatility Skew

Negative Skew - How it might look

Strike Price	Implied Volatility %
5	60.00
10	47.00
15	35.00
20	29.00
25	25.00
30	22.00
35	20.00
40	18.00
45	17.00
50	16.00
55	15.63
60	15.75
65	16.00
70	16.75
75	17.50
80	18.00
85	18.75
90	19.50
95	20.50
100	21.25
105	22.00

At-the-money strike

Negative Volatility Skew

© 2023 The Options Clearing Corporation. All Rights Reserved.

Positive Skew - How it might look

	Strike Price	Implied Volatility %
	5	22
	10	21.25
	15	20.5
	20	19.5
	25	18.75
	30	18.2
	35	17.5
	40	16.75
	45	16.15
At-the-money strike	50	15.75
	55	15.625
	60	16
	65	17
	70	18.35
	75	20
	80	22
	85	25.5
	90	31
	95	39.5
	100	47.75
	105	60

Smile Skew - How it might look

	Strike Price	Implied Volatility %
	5	50
	10	40
	15	30
	20	27.5
	25	23
	30	19.75
	35	18.25
	40	16.75
	45	16.15
At-the-money strike	50	15.75
	55	15.625
	60	16
	65	17
	70	18.35
	75	20
	80	22
	85	25.5
	90	31
	95	39.5
	100	47.75
	105	60

Smile Volatility Skew

© 2023 The Options Clearing Corporation. All Rights Reserved.

Measuring and Tracking Skew

Measuring and Tracking Skew Metrics by Price

Delta (Calls)	Implied Vol (Calls)	Price (Calls)	STRIKE	Price (Puts)	Implied Vol (Puts)	Delta (Puts)
.80	21.8	10.00	203.00	1.20	21.8	20
.75	20.1	8.30	206.00	1.75	20.1	25
.60	18.3	4.59	210.00	2.78	18.3	40
.50	17.2	3.35	212.00	3.48	17.2	50
.40	15.9	2.16	214.00	4.36	15.9	60
.26	14.4	1.06	216.50	5.77	14.4	74
.21	13.75	.90	217.00	6.10	13.75	79

One Method of Tracking Skew is by comparing the prices near the 25 Delta Put and the 25 Delta Call for options sharing the same expiration date. In the case of a product with Put skew, the put is generally going to be more expensive.

In this case, that leaves us with the following:

25 Delta Put – 25 Delta Call = Price of the "Risk Reversal"

1.75 – 1.06 = .69 cents

Measuring and Tracking Skew Metrics using the Volatility Ratio (25 Delta Put ÷ 25 Delta Call)

Delta (Calls)	Implied Vol (Calls)	Price (Calls)	STRIKE	Price (Puts)	Implied Vol (Puts)	Delta (Puts)
.80	21.8	10.00	203.00	1.20	21.8	20
.75	20.1	8.30	206.00	1.75	20.1	25
.60	18.3	4.59	210.00	2.78	18.3	40
.50	17.2	3.35	212.00	3.48	17.2	50
.40	15.9	2.16	214.00	4.36	15.9	60
.26	14.4	1.06	216.50	5.77	14.4	74
.21	13.75	.90	217.00	6.10	13.75	79

Another Method of Tracking Skew is by comparing the Implied Volatility levels near the 25 Delta Put and the 25 Delta Call for options sharing the same expiration date. In the case of a product with Put skew, the put is generally going to have a higher Implied Volatility level.

In this case, that leaves us with the following:

25 Delta Put Vol ÷ 25 Delta Call Vol = Skew Volatility Ratio

 $20.1 \div 14.4 = 1.39$

Measuring and Tracking Call Skew Metrics using only the Calls (50 Delta Call ÷ 25 Delta Call)

Delta (Calls)	Implied Vol (Calls)	Price (Calls)	STRIKE	Price (Puts)	Implied Vol (Puts)	Delta (Puts)
.80	21.8	10.00	203.00	1.20	21.8	20
.75	20.1	8.30	206.00	1.75	20.1	25
.60	18.3	4.59	210.00	2.78	18.3	40
.50	17.2	3.35	212.00	3.48	17.2	50
.40	15.9	2.16	214.00	4.36	15.9	60
.26	14.4	1.06	216.50	5.77	14.4	74
.21	13.75	.90	217.00	6.10	13.75	79

Another Method of Tracking only the Call Skew is by comparing the Implied Volatility levels near the 50 Delta Call and the 25 Delta Call for options sharing the same expiration date. In the case of a product with Negative skew, the 50 Delta Call Implied Vol is generally going to have a higher Implied Volatility level.

In this case, that leaves us with the following:

50 Delta Call Vol ÷ 25 Delta Call Vol = Call Skew Volatility Ratio

 $17.2 \div 14.4 = 1.19$

Measuring and Tracking Put Skew Metrics using only the Puts (50 Delta Put ÷ 25 Delta Put)

Delta (Calls)	Implied Vol (Calls)	Price (Calls)	STRIKE	Price (Puts)	Implied Vol (Puts)	Delta (Puts)
.80	21.8	10.00	203.00	1.20	21.8	20
.75	20.1	8.30	206.00	1.75	20.1	25
.60	18.3	4.59	210.00	2.78	18.3	40
.50	17.2	3.35	212.00	3.48	17.2	50
.40	15.9	2.16	214.00	4.36	15.9	60
.26	14.4	1.06	216.50	5.77	14.4	74
.21	13.75	.90	217.00	6.10	13.75	79

The Last Method of Tracking Skew is by comparing the Implied Volatility levels near the 50 Delta Put and the 25 Delta Put for options sharing the same expiration date. In the case of a product with Put skew, the 25 Delta put is generally going to have a higher Implied Volatility level, so this ratio will generally be less than 1.00.

In this case, that leaves us with the following:

50 Delta Put Vol ÷ 25 Delta Put Vol = Put Skew Volatility Ratio

17.2 ÷ 20.1 = .855

Knowledge Check

- For an option in a month with Negative Skew, are the implied volatilities generally higher for Out-of-the-Money Puts or Calls?
 Puts
- Do equities and indicies generally have Negative (Put) skew or Positive (call / demand) Skew?
 Negative
- Skew is dynamic and moves around during the trading day: T/F? **True**
- Skew is a function of Supply and Demand, and is closely tied to option prices and Implied Volatility levels: T/F? True

The Options Industry Council

OIC is dedicated to increasing the awareness, knowledge and responsible use of exchange-listed options.

OCC Learning - a self-guided eLearning destination with coursework tailored to a variety of learning styles and experiences levels.

Download our podcasts and videos.

Attend webinars and learn from the pros.

Live options help from industry professionals with Investor Services.

OptionsEducation.org

For More Information

www.OptionsEducation.org

Investor Education: options@theocc.com

OIC YouTube Channel

LIKE us on Facebook

Follow us on Twitter @Options_Edu!

